prevalence_by_location(pango_lin, location, mutations=None, datemin=None, datemax=None, cumulative=None, lineage_crumbs=False)
- outbreak_data.prevalence_by_location(pango_lin, location, mutations=None, datemin=None, datemax=None, cumulative=None, server='api.outbreak.info')
Returns the daily prevalence of a PANGO lineage by location.
- Arguments:
- pango_lin:
(Required). List of lineages separated by ,
- location_id:
(Optional). Default location: USA
- mutations:
(Optional). List of mutations separated by AND
- cumulative:
(Optional). If true returns the cumulative global prevalence since the first day of detection.
- datemin:
(Optional). A string representing the first cutoff date for returned date. Must be in YYYY-MM-DD format and be before ‘datemax’
- datemax:
(Optional). A string representing the second cutoff date. Must be in YYY-MM-DD format and be after ‘datemin’
- return:
A pandas dataframe.
Example usage:
Get the daily prevalence of lineage ‘BA.2’ in India since first detection:
df1 = od.daily_prev('ba.2', "IND") print(df1)
date total_count lineage_count total_count_rolling \
0 2020-08-01 39 1 29.000000
1 2020-08-02 100 0 41.285714
2 2020-08-03 38 0 42.000000
3 2020-08-04 20 0 42.285714
4 2020-08-05 26 0 36.000000
... ... ... ... ...
1017 2023-05-15 2 0 5.857143
1018 2023-05-16 3 0 5.142857
1019 2023-05-17 3 0 3.285714
1020 2023-05-18 2 0 3.142857
1021 2023-05-20 1 0 2.000000
lineage_count_rolling proportion proportion_ci_lower \
0 0.142857 0.004926 0.000017
1 0.142857 0.003460 0.000012
2 0.142857 0.003401 0.000012
3 0.142857 0.003378 0.000012
4 0.142857 0.003968 0.000014
... ... ... ...
1017 0.000000 0.000000 0.000078
1018 0.000000 0.000000 0.000093
1019 0.000000 0.000000 0.000151
1020 0.000000 0.000000 0.000151
1021 0.000000 0.000000 0.000217
proportion_ci_upper
0 0.082286
1 0.059076
2 0.057719
3 0.057719
4 0.066944
... ...
1017 0.330389
1018 0.379377
1019 0.535583
1020 0.535583
1021 0.666822
Get a cumulative summary of information regarding ‘BA.2’ in India:
df2 = od.daily_prev('ba.2', "IND", cumulative = True) print(df2)
Values
first_detected 2020-08-01
global_prevalence 0.109641
last_detected 2023-04-26
lineage_count 25561
total_count 233134