prevalence_by_location(pango_lin, location, mutations=None, datemin=None, datemax=None, cumulative=None, lineage_crumbs=False) ------------------------------------------------------------------------------------------------------------------------------- .. autofunction:: outbreak_data.prevalence_by_location Example usage: 1. Get the daily prevalence of lineage 'BA.2' in India since first detection:: df1 = od.daily_prev('ba.2', "IND") print(df1) .. code-block:: :caption: Output date total_count lineage_count total_count_rolling \ 0 2020-08-01 39 1 29.000000 1 2020-08-02 100 0 41.285714 2 2020-08-03 38 0 42.000000 3 2020-08-04 20 0 42.285714 4 2020-08-05 26 0 36.000000 ... ... ... ... ... 1017 2023-05-15 2 0 5.857143 1018 2023-05-16 3 0 5.142857 1019 2023-05-17 3 0 3.285714 1020 2023-05-18 2 0 3.142857 1021 2023-05-20 1 0 2.000000 lineage_count_rolling proportion proportion_ci_lower \ 0 0.142857 0.004926 0.000017 1 0.142857 0.003460 0.000012 2 0.142857 0.003401 0.000012 3 0.142857 0.003378 0.000012 4 0.142857 0.003968 0.000014 ... ... ... ... 1017 0.000000 0.000000 0.000078 1018 0.000000 0.000000 0.000093 1019 0.000000 0.000000 0.000151 1020 0.000000 0.000000 0.000151 1021 0.000000 0.000000 0.000217 proportion_ci_upper 0 0.082286 1 0.059076 2 0.057719 3 0.057719 4 0.066944 ... ... 1017 0.330389 1018 0.379377 1019 0.535583 1020 0.535583 1021 0.666822 2. Get a cumulative summary of information regarding 'BA.2' in India:: df2 = od.daily_prev('ba.2', "IND", cumulative = True) print(df2) .. code-block:: :caption: Output Values first_detected 2020-08-01 global_prevalence 0.109641 last_detected 2023-04-26 lineage_count 25561 total_count 233134