growth_rates ------------- .. autofunction:: outbreak_data.growth_rates **Example Usage** Get growth rate data for BA.2.86 on 2024-02-02 in the US:: >>> df = outbreak_data.growth_rates('BA.2.86', 'USA') >>> df.loc['USA','BA.2.86','2024-02-02'] >>> df G_7 0.030113 G_7_linear 3.057071 N_7 0.000000 N_prev_7 1.000000 Prevalence_7 0.002365 Prevalence_7_percentage 0.236476 confidenceInterval20 1.044012 confidenceInterval35 1.879221 confidenceInterval5 0.250563 confidenceInterval50 2.797951 confidenceInterval65 3.883724 confidenceInterval80 5.345340 confidenceInterval95 8.185052 deltaG_7 0.040522 deltaG_7_linear 4.176047 deltaN_7 3108.000000 deltaN_prev_7 1.582951 deltaPrevalence_7 0.703224 deltaPrevalence_7_percentage 70.322444 invDeltaG_7 24.678140 snr 0.732049 Name: (USA, BA.2.86, 2024-02-02), dtype: float64 Get the prevalence percentage and 80% confidence intervals for BA.2 and BA.2.86:: >>> df = outbreak_data.growth_rates('BA.2, BA.2.86' , 'USA') >>> df = df[[ 'Prevalence_7_percentage', 'confidenceInterval80']] >>> df Prevalence_7_percentage confidenceInterval80 location lineage date USA BA.2 2024-01-30 0.184008 5.410016 2024-01-31 0.180807 5.463835 2024-02-01 0.178196 5.519133 2024-02-02 0.176874 5.521128 2024-02-03 0.175658 5.520665 ... ... ... BA.2.86 2024-03-07 0.514831 6.592654 2024-03-08 0.512352 6.565807 2024-03-09 0.510145 6.595931 2024-03-10 0.508168 6.524510 2024-03-11 0.526594 6.380216 [91 rows x 2 columns]